Voronoi Diagram

Delaunay	Voronoi
triangulation	diagram

> Delaunay and Voronoi

ZHENG Yufei
郑羽霏
יופיי ז＇נג

Jan．17， 2017

How round is an object?

How round is an object?

© Formal problem:
(0) Given samples from the surface of a quasicircular object, we would like to quantify how round it is.

Smallest width ring

(o) We can come up with many measures
(We will consider the following measure: What is the width of the minimal ring that contain all the samples?

Smallest width ring

© Observations:
© It suffice to find the center of the ring
© The rings are determined by 4 points

Case 2:
1 outer 3 inner

2 outer 2 inner

Ordinary Voronoi Diagram - Recall

(o) Definition - a subdivision of plane into cells

- Sites: $S=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$
- Euclidean distance in the plane

$$
\operatorname{dist}(p, q)=\sqrt{\left(p_{x}-q_{x}\right)^{2}+\left(p_{y}-q_{y}\right)^{2}}
$$

p lies in the cell of site s_{i} iff

$$
\operatorname{dist}\left(p, s_{i}\right)<\operatorname{dist}\left(p, s_{j}\right), \forall s_{j} \in \mathrm{~S}, \mathrm{j} \neq i
$$

() Cells - $V\left(s_{i}\right)=\cap_{1 \leq j \leq n, j \neq i} h\left(s_{i}, s_{j}\right)$
© Edges - straight line segments

Farthest point Voronoi diagram

(0) Each cell is associated with the farthest point from the cell

Farthest point Voronoi diagram

(o) Observations:
© The diagram is the intersection of the "Other side" of the bisector half-planes.
© A point p has a cell iff p is a vertex of the convex hull of the point.
() If the farthest point from q is p_{i}, then, the ray from q in the opposite direction to p_{i} is also in the cell of p_{i}.
\Rightarrow The cells are unbounded.
(O) The separator between the cells of p_{i} and p_{j} is the bisector of p_{i} and p_{j}

Farthest point Voronoi diagram

(o) Observations:
© The diagram is the intersection of the "Other side" of the bisector half-planes.
© A point p has a cell iff p is a vertex of the convex hull of the point.
() If the farthest point from q is p_{i}, then, the ray from q in the opposite direction to p_{i} is also in the cell of p_{i}.
\Rightarrow The cells are unbounded.
(O) The separator between the cells of p_{i} and p_{j} is the bisector of p_{i} and p_{j}

Farthest point Voronoi diagram

(0) Consider a random order of the CH vertices, p_{1}, \ldots, p_{h}
Given a diagram for p_{1}, \ldots, p_{i-1} we would like to add p_{i}
© We will denote the neighbors of p_{i} (when p_{i} is added) as $c w\left(p_{i}\right)$ and $c c w\left(p_{i}\right)$
© How do we find $c w\left(p_{i}\right)$ and $c c w\left(p_{i}\right)$?

- Remove the points in the opposite order, the neighbors when p_{i} is removed are $c w\left(p_{i}\right)$ and $c c w\left(p_{i}\right)$

Farthest point Voronoi diagram

Farthest point Voronoi diagram

© Complexity:
© CH-O $(n \log n)$
© Insertion of p_{i} : worst case O (i)
Expected: O(1)
© Proof:
©The complexity of the i th insertion is as the complexity of the cell of p_{i}
© There are at most $2 i-3$ edges after the i th insertion
() \Rightarrow The average cell complexity is O (1)
© Each point from p_{1}, \ldots, p_{i} have the same probability to be the last one added \Rightarrow the expected complexity of insertion is O (1)
© Corollary: the expected complexity is $O(n \log n)$ and the worst case complexity is $O\left(n^{2}\right)$.

Back to the smallest width ring

© Case 1: the center is a vertex of the farthest point Voronoi diagram
© Case 2: the center is a vertex of the closest point Voronoi diagram
© Case 3: the center is an intersection of two edges from both diagrams.

Case 1:
3 outer 1 inner

Case 2:
1 outer 3 inner

Case 3:
2 outer 2 inner

Multiplicatively Weighted Voronoi Diagram

© Difference - Euclidean distance between points is divided by positive weights

Distance - $\operatorname{dist}\left(p, s_{i}\right)=\frac{\left\|p-s_{i}\right\|}{w_{i}}$.
© Edges - circular arcs or straight line segments
For every point x on the edge separating $V\left(s_{i}\right)$ and $V\left(s_{j}\right)$,

Additively Weighted Voronoi Diagram.

© Difference - positive weights are subtracted from the Euclidean distance

Distance $-\operatorname{dist}\left(p, s_{i}\right)=\left\|p-s_{i}\right\|-w_{i}$.
(O) Edges - hyperbolic arcs or straight line segments

- For every point x on the edge separating $V\left(s_{i}\right)$ and $V\left(s_{j}\right)$,

$$
\operatorname{dist}\left(x, s_{i}\right)=\operatorname{dist}\left(x, s_{j}\right)+\left(w_{i}-w_{j}\right)
$$

Voronoi Diagram in Different Metric

(o) Difference - Distance defined in L_{1}

- Distance - $\operatorname{dist}\left(p, s_{i}\right)=\left|p_{x}-s_{i, x}\right|+\left|p_{y}-s_{i, y}\right|$.
(O Edges - vertical, horizontal or diagonal at ± 45 degree

Centroidal Voronoi Diagråm (CVD)

© Difference - Each site is the mass centroid of each cell
Given a region $V \in \mathrm{R}^{N}$, and a density function ρ, mass centroid \boldsymbol{z}^{*} of V is defined by $\boldsymbol{z}^{*}=\frac{\int_{V} \boldsymbol{y} \rho(\boldsymbol{y}) d \boldsymbol{y}}{\int_{V} \rho(\boldsymbol{y}) d \boldsymbol{y}}$

- Centroid of polygon (CCW order of the vertices $\left(x_{i}, y_{i}\right)$)

$$
\begin{gathered}
\text { Area }=A=\frac{1}{2} \sum_{i=0}^{N-1}\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right) \\
x_{c}=\frac{1}{6 A} \sum_{i=0}^{N-1}\left(x_{i}+x_{i+1}\right)\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right) \\
y_{c}=\frac{1}{6 A} \sum_{i=0}^{N-1}\left(y_{i}+y_{i+1}\right)\left(x_{i} y_{i+1}-x_{i+1} y_{i}\right)
\end{gathered}
$$

CVD Computation - Lloyd's Algorithm

1. Compute the Voronoi Diagram of the given set of sites $\left\{s_{i}\right\}_{i=1}^{n}$;
2. Compute the mass centroids of Voronoi cells $\left\{V_{i}\right\}_{i=1}^{n}$ found in step 1, these centroids are the new set of sites;
3. If this new set of sites meets the convergence criterion, terminate;
Else, return to step 1.

Note

Convergence criterion depends on specific application Converges to a CVD slowly, so the algorithm stops at a tolerance value
Simple to apply and implement

First iteration

Second iteration

Third iteration

Fifteenth iteration

Voronoi Diagram in Higher Dimensions

© Cells - convex polytopes
© Bisectors - (d - 1)-dimensional hyperplanes
© Complexity - $O\left(n^{\left[\frac{d}{2}\right]}\right)$

