236719 Computational Geometry – Tutorial 4

Voronoi Diagram

Delaunay triangulation Voronoi diagram Delaunay and Voronoi

ZHENG Yufei 郑羽霏 יופיי ז'נג

Jan. 17, 2017

How round is an object?

How round is an object?

 Formal problem:
 Given samples from the surface of a quasicircular object, we would like to quantify how round it is.

Smallest width ring

 We can come up with many measures
 We will consider the following measure: What is the width of the minimal ring that contain all the samples?

Smallest width ring

Observations:
It suffice to find the center of the ring
The rings are determined by 4 points

Ordinary Voronoi Diagram - Recall

Definition – a subdivision of plane into cells

• Sites: $S = \{s_1, s_2, \cdots, s_n\}$

Euclidean distance in the plane

dist
$$(p,q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$$
.

○ *p* lies in the cell of site s_i iff dist(*p*, s_i) < dist(*p*, s_j), $\forall s_j \in S, j \neq i$.

Cells -
$$V(s_i) = \bigcap_{1 \le j \le n, j \ne i} h(s_i, s_j)$$

Edges - straight line segments

Search cell is associated with the farthest point from the cell

Observations:

- OThe diagram is the intersection of the "Other side" of the bisector half-planes.
- OA point p has a cell iff p is a vertex of the convex hull of the point.
- If the farthest point from q is p_i , then, the ray from q in the opposite direction to p_i is also in the cell of p_i .
 > The cells are unbounded.
- The separator between the cells of p_i and p_j is the bisector of p_i and p_j

Observations:

- OThe diagram is the intersection of the "Other side" of the bisector half-planes.
- OA point p has a cell iff p is a vertex of the convex hull of the point.
- If the farthest point from q is p_i , then, the ray from q in the opposite direction to p_i is also in the cell of p_i .
 > The cells are unbounded.
- The separator between the cells of p_i and p_j is the bisector of p_i and p_j

- Oconsider a random order of the CH vertices,
 - p_1, \ldots, p_h
- \bigcirc Given a diagram for p_1, \dots, p_{i-1} we would like to add p_i
- \bigcirc We will denote the neighbors of p_i (when p_i is added) as $cw(p_i)$ and $ccw(p_i)$
- \bigcirc How do we find $cw(p_i)$ and $ccw(p_i)$?
- \circ Remove the points in the opposite order, the neighbors when p_i is removed are $cw(p_i)$ and $ccw(p_i)$

- O Complexity:
- \bigcirc CH $O(n \log n)$
- \bigcirc Insertion of p_i : worst case O(i)

Expected: O(1)

OProof:

- \odot The complexity of the ith insertion is as the complexity of the cell of p_i
- \bigcirc There are at most 2i 3 edges after the *i*th insertion
- \bigcirc \Rightarrow The average cell complexity is O(1)
- Each point from p₁, ..., p_i have the same probability to be the last one added ⇒ the expected complexity of insertion is O(1)
 Corollary: the expected complexity is O(n log n) and the worst case complexity is O(n²).

Back to the smallest width ring

- Case 1: the center is a vertex of the farthest point Voronoi diagram
- ○Case 2: the center is a vertex of the closest point Voronoi diagram
- ○Case 3: the center is an intersection of two edges from both diagrams.

Multiplicatively Weighted Voronoi Diagram

Difference – Euclidean distance between points is divided by positive weights

• **Distance** - dist
$$(p, s_i) = \frac{\|p - s_i\|}{w_i}$$
.

O Edges – circular arcs or straight line segments

• For every point x on the edge separating $V(s_i)$ and $V(s_j)$,

Additively Weighted Voronoi Diagram

Difference – positive weights are subtracted from the Euclidean distance

• **Distance** - dist $(p, s_i) = ||p - s_i|| - w_i$.

•

•

•

 $\mathbf{\cdot}$

Edges – hyperbolic arcs or straight line segments
 For every point x on the edge separating V(s_i) and V(s_j), dist(x, s_i) = dist(x, s_j) + (w_i - w_j).

Voronoi Diagram in Different Metric Difference – Distance defined in L_1 **Distance** - dist $(p, s_i) = |p_x - s_{i,x}| + |p_y - s_{i,y}|$.

O Edges – vertical, horizontal or diagonal at ±45 degree

Centroidal Voronoi Diagram (CVD)

Difference – Each site is the mass centroid of each cell

• Given a region $V \in \mathbb{R}^N$, and a density function ρ ,

mass centroid z^* of V is defined by $z^* = \frac{\int_V y\rho(y) dy}{\int_V \rho(y) dy}$

• **Centroid of polygon** (CCW order of the vertices (x_i, y_i))

$$Area = A = \frac{1}{2} \sum_{i=0}^{N-1} (x_i y_{i+1} - x_{i+1} y_i)$$
$$x_c = \frac{1}{6A} \sum_{i=0}^{N-1} (x_i + x_{i+1}) (x_i y_{i+1} - x_{i+1} y_i)$$
$$y_c = \frac{1}{6A} \sum_{i=0}^{N-1} (y_i + y_{i+1}) (x_i y_{i+1} - x_{i+1} y_i)$$

CVD Computation – Lloyd's Algorithm

- 1. Compute the Voronoi Diagram of the given set of sites $\{s_i\}_{i=1}^n$;
- 2. Compute the mass centroids of Voronoi cells $\{V_i\}_{i=1}^n$ found in step 1, these centroids are the new set of sites;
- If this new set of sites meets the convergence criterion, terminate;
 Else, return to step 1.

Note

- Convergence criterion depends on specific application
- Converges to a CVD slowly, so the algorithm stops at a tolerance value
 - Simple to apply and implement

First iteration

Third iteration

Fifteenth iteration

Voronoi Diagram in Higher Dimensions

 Cells – convex polytopes
 Bisectors - (d – 1)-dimensional hyperplanes

Complexity - $O(n^{\left\lfloor \frac{d}{2} \right\rfloor})$

